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Abstract

The properties of a radiating boundary layer near the edge of a hot plasma containing im-
purities are considered. A discontinuous sheath model is developed which includes

heat conduction, radiation and additional heating (or losses). Simple analytic scaling
formulas are obtained for the equilibrium, and means of external control are suggested.
Stability criterions are derived for various sheath structures, and growth rates and
eigenfunctions are given for an unstable case. The results may help to understand the
dynamics of a radiating boundary layer and may be used as a rough guideline for numerical

plasma simulations and even for experiments.




I. Introduction

An important question in large fusion experiments or a reactor is how to get rid of the
plasma energy losses at the wall without damaging the wall and/or producing such
contamination that the plasma as a whole cools down by radiation /1, 2, 3/. It was argued
that energy transport to the wall by neutral or charged particles at relevant power densities
necessarily leads to impurity production until nearly all the outgoing energy is radiated

away by the increased impurity radiation /4/.

For the ignition experiment ZEPHYR proposed at Garching such a self-shielding would
be vital, since, because of the small dimensions, the wall loading is indeed extremely
high. Therefore, plasma simulations with the one-dimensional computer code BALDUR /5/
developed at Princeton were made in order to study the consequences of various wall inter-

action models and their compatibility with an ignited plasma state.

The desired behaviour was indeed observed, for instance in case of an idealized radiofre-
quency heating (prescribed heat deposition profile with some relevance for ion cyclotron
heating):

For a certain amount of impurity, e.g. iron, a cold plasma boundary layer developed

which was separated from the hot plasma by a narrow radiation zone where nearly 100 per cent
of the outgoing energy flux was radiated away. This sheath structure could be maintained
for several hundred milliseconds in the case of a prescribed iron influx. An even more
optimistic result was obtained when the iron influx was coupled to the charge exchange
outflux viasputtering. In this case a self-regulating mechanism was observed in the sense
that sputtering (and therefore the iron influx) stops when the radiation layer has developed
and the high-energy charge exchange neutral flux to the wall is suppressed. On a long time
scale one may expect an equilibrium structure of the sheath such that the diffusion of iron

to the wall is equal to the influx. In sputtering runs the radiation sheath could be frequently
maintained during the heating cycle (simulating RF heating; no compression) and the sub-

sequent burn phase, i.e. for several seconds.

Figure Ta shows typical profiles calculated with BALDUR (iron sputtering) 0.6 seconds after
the end of a 1-second RF heating pulse (11 MW in a 20 cm thick toroidal cylindrical shell;
Ro =135 cm, a =50 cm, B=9.15 tesla). There is a cold plasma layer (T, = several e V ),

roughly identical with the density gradient region, separated from the hot plasma by a narrow



radiation sheath as seen in Fig. 1b, where the radially integrated losses and heating rates
are shown. The total &K - heating is higher than the sum of all losses, i.e. the plasma is
ignited. About 94 % of the energy loss at the wall is by radiation, about two-thirds
originating from a narrow sheath separating the cold plasma layer from the hot central
plasma. There is still some loss by charge exchange neutrals caused by the increasing

& - input, which, in turn, increases the iron content and readjusts the radiation level.
The amount of iron impurity, typically below 0.05 per cent, is still compatible with

ignition, which means the radiation from the hot central plasma is low enough.

The sheath width in the above BALDUR run is still influenced by the finite grid size since

the mean free path of neutrals in the boundary layer is still comparable with the grid distance.
Refining the grid in the boundary layer simply leads to a steeper density gradient (gas

puffing plus recycling) and a smaller sheath, while the sheath structure is maintained.

This is demonstrated in Fig. 2 ,  which shows profiles during a 15 MW RF heating pulse,
which again leads to ignition about half a second later. Further details of these BALDUR
simulations and the sheath dynamics during a heating cycle will be given elsewhere. Of
course, additional impurities and various physical mechanisms not included in BALDUR (e.g.
deviations from local coronal equilibrium) might change this picture and iron may not be the
optimum impurity, i.e. first wall material. Optimization will certainly require further

experiments and theoretical progress.

In any case such a radiation-cold plasma layer would obviously ease the wall loading problem
dramatically. For ZEPHYR one expects an average wall loading of around 50 W/cm2 in the
case of uniformly distributed radiation, while heat conduction to the wall might well reach

> 1 kW/cm2, depending on the effective area where the plasma touches the wall. The first

value is quite reasonable while the second is nearly prohibitive.

For a qualitative understanding of the dynamics and the parameter scaling of such a cold
plasma - radiation double layer it is useful to look at a simple analytic model like that

described below.




Il. Boundary Layer Equilibrium

1. The Basic Sheath Model

We assume a semi-inifinite plasma slab with spatially constant electron, hydrogen and

impurity density (ne, Ny nl) but arbitrary temperature dependence:
ngs Ny ni = const; T = T(x).

The spatial coordinate x is zero at the boundary and positive in the plasma. Energy
fransport in the x direction occurs by heat conduction and radiation only. Charge exchange
neutrals are not considered. According to the BALDUR result, this model should include
the most important mechanisms relevant for the existence of the radiation layer and its
stability at least on a time scale compared with the characteristic time of change of the
density profiles. The effect of a density gradient will be considered later on. The model
obviously does not include the immediate neughbourhood of the limiter or wall, which is
much more complicated. This transition layer can at best be taken into account by properly

chosen boundary conditions (the same is true of BALDUR).

A further important simplification of our model is obtained by choosing an idealized

radiation characteristic or cooling rate S(T) caused by the impurity

S(M) = S = const forT]( T <T2
° (see Fig. 3)

S = 0, elsewhere.

The justification for this may be drawn from the cooling rates given in the literature /&/,

at least in the case of low and intermediate atomic weight. In addition, a rapid impurity
diffusion, which might appreciably modify the local coronal equilibrium assumption /7/,
could be qualitatively taken into accound by using a broader radiation characteristic, i.e.
by increasing T2 and appropriately decreasing T] . The same is possible if several impurities
radiate simultaneously at a comparable level in overlapping or neighbouring temperature
regions. Because of the constant density, the radiated power density P is directly proportional

to the normalized cooling rate S:

POC ne'y‘)j'SOCS



The desired equilibria are specified as follows: A given heat flux Qlll from the hot plasma

(region l11; T > T2) enters a radiation layer (region I; T. < T < T2), where an appreciable

1
fraction is radiated away while the rest is transported to the wall through a colder plasma
layer (region |; T < T]). For simplicity, the wall temperature is set to zero, but obviously

it could have any other value below T.. (Notation: Indices 1, 2 refer to the boundaries;

1

I, 1, 11l refer to the relevant regions).

From the heat conduction Q = x - dT/dx (Q positive in the direction of the wall;

X = heat conduction coefficient) and energy conservation dQ/dx = P we get

A d2T/clx2 = P (T), which is easily integrated in each region because of the very special
assumption for P (T). Prescribing Po' T], T2,QlI . x! ; X” we immediately get the width a

of region |, the width b of region || and the remaining heat flow to the wall, QI:

Al

a.s g Ar 7,‘//@,,,—21’,, P (Tz—7;)1
b= (1-/1-2 2, (- T) P/a})
a,=/Gy-2% P(T~Tr)

A typical solution indicating a reasonable similarity with the BALDUR result is shown in

Fig. 4.

Except for the obvious scalings of a, b, QI with T], T2, Po' QIII one should notice the

consequences of changing XI and/or 2/” . For instance, the width of the radiation layer b

and therefore the total radiated power, P, = Po * b, can be increased by increasing Z”

tot

until Pto Q”, b= bmax = QI I/Po and QI = 0 (fixed impurity characteristic, i.e.

1' —_—
T], T2, Po)' This also means that by increasing X” one can decrease the impurity content

necessary to radiate away QIII or a large fraction of it.

In a similar way the width of the cold plasma layer can be increased by increosing,z/I , but

in contrast to the radiation zone b it does not reach an asymptotic value. Note also that the




widthvis directly proportional to T] (which is not very well defined experimentally),
and goes to infinity when Ql approaches zero. (Near this limit it is rather sensitive to

inaccuracies of the model and the numerical value should not be taken too seriously).

The sensitivity of the radiation - cold plasma layer to changes in the thermal conduction
coefficient could be used to influence this layer externally (e.g. by ergodization of field

lines) and could even be used to explain certain features of the disruption of contaminated

plasmas/ 8 /.

2. Extensions of the Basic Sheath Equilibrium

a) Additional heating in the sheath region

It is now assumed that there is piecewise homogeneous additional heating throughout the
sheath (e.g. from a penetrating neutral beam) in competition with the radiation loss, which

occurs only in region Il. With a heating power density HI and HlI we immediately get
HI H[ Hy
b= Ra _ﬂ___ﬂ,_ ")z" 2%y (-T7) (P>'Z/’/)

Qg = 0=/ & - 22y (7-T,) (P~ Ha)

It should be noticed that for H =0 or(P - H”)= 0 we get a :l/l T]/Q] and

|
b = 1 (T2 - T])/Q2 as expected.

The result for b differs from the previous one only in (P - H| I) instead of P.

More interesting is the influence on a: for Q =0 we no longer get a —> 00, but

a = [2Xc T '
max HI

This means that the width of the cold plasma layer,a,can be externally controlled by




additional heating in this region, especially in the important case where Q] is small
(see also/ 1 /). A jump in H may also occur somewhere away from the radiation

boundaries, depending on the heating mechanism. An example is sketched in Fig. 5.

b) Density gradients

We take the basis model but allow for a gradient in the densities; X is kept constant.
Because of our definition of the heat conduction coefficient, Q= X dT /dx, X = const

is equivalent to the well-known A o Vl-1scc|ing in the usual tokamak defintion

Q=N ndl/dx): X =n-K

The radiated power is now a function of T and x
P, (M)'rzd‘ (x)/ T,<T<T;
P(T,x) « ne(x): n; (x)- S(T) cc{ 0, elscwhere

The equilibrium is again obtained simply by integrating 2/d2T/dx:2 =P (T,x) fora
prescribed ne(x) - n.(x). Though these equilibria are quantitatively different from the
previous ones, they show essentially the same scaling with A, T] " T2 etc. as for
constant density. In fact, it is the stability of the radiating layer which is sensitive to

density gradients, as will be shown later for a special example (Fig. 6).

c) Multistep radiation characteristics

A more realistic approximation for the radiation characteristics is obtained by using a
multistep function. For the case with constant radiation loss in regions | and 1l in
addition to the major radiation loss in Il we shall investigate the stability. The equilibrium

is again not much different from those above (Fig. 7).

d) Spatially fixed jump in heat conduction coefficient

A case of special interest is that where 2/ jumps somewhere in the sheath. If this jump
is caused by a region of ergodic field lines or a separatrix, it will be spatially fixed and

may therefore help to stabilize the radiation zone.




e) Temperature dependent 2,/, etc.

There are further possible extensions of the sheath model, such as A= Z(T)efc. Some
of these require a modified analytical treatment, e.g. a differential equation in the
stability analysis other than those chosen above (which lead to a homogeneous heat

conduction equation; see below).

It is not our intention to give a complete summary of all possible equilibria, but to de-
monstrate the main features of a radiating boundary layer, for as simple examples as

possible and to get simple scaling laws and stability criteria.

[l. Stability of the Radiating Layer

1. Stability of the Basic Sheath Structure

Because of the simple model it is possible to make a stability analysis for the radiation

layer. The equation for T (x, t) is

T 'r _ -
5--)-(-= (X—a—x—?:-F(T)) j }—//,’2//1‘;(

where C is inversely proportional to the heat capacity.

Assuming a perturbed temperature
T(t)=T(x)+T(xt) , <,

we get the linearized equation

within each region, i.e. we get the homogeneous heat conduction equation with the

solution

T = exp (ft) [1‘4 exp (+ W)(/+ ka e)(P(-W’X/\]

The main question is whether there are unstable solution ( x> 0) and, if so, what are

the growth rates. We are not so much interested in the details of stable (spatially periodic)

solutions (X( 0).



A special feature of the discontinuous model is that a perturbed temperature is directly

related to a shift of the boundaries between the sheaths (coordinates X =0 x,=a +b).

2

Assuming shift X and X, respectively and requiring that

1 .
~ =
T(xw"’X,f ) = /,,(X4o> = T4
20 r 20 2
(the index O refers to equilibrium quantities), we find that

997)—: ;4 == (Xw)

x| Q; do not enter directly into the analysis, but are used to determine the jump condition

for the heat flux across the boundaries at x, and x

1 2’

The heat flux lost at the boundary is

£ PX, = - T ()X P/Q
o= f (2-r)de-f ] ’

° =Px, = 7 ("Zo)/(?/&m ) X=Xz

It is the SQ which represents the driving ( 5@2 ) and stabilizing ( 8 Q]) terms or,

X=)(70

"

in other words, increasing (decreasing) radiation with increasing temperature is stabilizing

(destabilizing).

The boundary conditions are now

x=0:  2;(0)=0 (or 37zfix (0) =0, ov mixed )
X= x'!o: 'Ci’ ()(10) = '[—/, ()(10)

9?'_ll _9?}_’ __E_‘\-' X
e ban) = G lrw) = T ()

X= be: '('\l; (X?.o) = T[” (XZO)

T = "~
AL (X ) = %% (X20) == EP;’ Enom (%20)
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X=00 ;: Ty (°0)=0 U (o) =0
Py 5

(or some mixed condition at finite x30).

Accordingly, we choose an ansatz for the eigenfunction of the form

P/X) , yeeCX

Inserting this in the boundary conditions, we get a set of linear equations for the
coefficients k. Nontrivial solutions are obtained if the determinant D is zero, yielding

the disper5|on relatlon

= Qm [écosk (£a) (8‘-— C? ) sinh (Ect):l

+(Z£—‘6-?7” +£A[gwsh(£a)+(£+-— Slnh(«fﬂ)l =0

This is now an equation for € (and therefore X , which cannot be solved analytically.
One can, however, draw some conclusions from the behaviour of D ( € ) for & -0

and & =P co :
D(g=0)=0 D' (0) = dd/de (0) =0

D(s>0w) > oo
2

..D”(O) o J>/a(c (e=0) o< 1+a Qr _(a,.,./))-&-,—”—qé Qr Qu

ol QI ) Stnce P:(Q[”-QI)/A Kk
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Since Ql > 0 (monotonically increasing temperature) was assumed, one finds

i
Do) 20
a condition which is necessary, but not sufficient for stability (.D”{O) < 0 would be

sufficient but not necessary for instability! See Fig. 8).

In a numerical study of D ( & ) for a variety of such basic sheath structures, we never

. o . " . N
found an unstable one, i.e. the criterion D (0) 20 may be an exact stability criterion.

In order to investigate the influence of the boundary condition at the wall, the flux was
fixed instead of the temperature, i.e. 3?/(;)( instead of 7~ . The result, however, is

essentially the same, namely that all reasonable sheaths examined so far are stable.

2. Stability of More Complex Sheath Structures

As mentioned earlier, the extended equilibria described above are chosen such that they

can be treated with the same stability formalism as the basic sheath. In fact, they all lead

to the homogeneous heat conduction equation after linearization and only minor modifications
of the formalism are required, which are not described in detail. Usually we give only the
modified stability criterion, but in one case growth rates and eigenfunctions are also

presented.

a) Additional heating in the sheath region

If there is a constant additional heating power H (or a nonradiative loss) throughout the
sheath region, then the equilibrium is changed but the stability is essentially as for the

basic sheath, i.e. the sheath is stable.

If there is a jump of the heating power somewhere fixed in space (in reality this would mean

a strong gradient), we still find stability.

A major change occurs only if the jump in the heating power (or loss) is not spatially fixed
but temperature dependent and undergoes a shift when the temperature changes. This case
may well be of practical interest since many heating or loss mechanisms depend on the
local temperature and there is an extreme temperature gradient over the sheath. The
additional heating or loss may then be treated like radiation losses taking the appropriate

sign.
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A special case where the jump coincides with one of the boundaries of the radiation sheath
is easily treated by combining temperature dependent heating and loss to obtain an arti-
ficial "radiation" characteristic. This case is considered quantitatively in (c). Here, we
anticipate the qualitative result: If the total jump is decreased at the low-temperature edge
and/or increased at the high-temperature edge of the radiation layer, then it is destabilizing
and vice versa. The heating power should thus decrease towards the hot plasma interior

fo enhance stability (or losses should increase).

Physically relevant loss mechanisms of this type are ohmic heating or ionization of neutral
gas (gas puffing and recycling) and of impurities in the boundary layer, where the cross-

section is a steep function of temperature.

In principle, we are led to the simple conclusion that the combined energy deposition
characteristic is locally stabilizing if losses increase (heating decreases) with increasing
temperature and vice versa. It is the purpose of the present analysis to calculate the net
stability effect in a spatially extended system consisting of locally favourable and unfavourable

regions by solving the corresponding eigenvalue problem.

b) Spatially varying density

If the radiating layer lies in a density gradient region, the an average shift to higher
densities increases the local radiation power ( P o< R 'nj ). It depends on the
change of the layer thickness and the relative sign of the density and temperature gradient

whether the layer becomes unstable or not.

In order to get a rough estimate of the stability in this case, we take equilibria of the type

described in Sec. Il b, but assume a rather simple form for the x-dependence of P(T,x):

Plot) = ST [P+ (B-F)(x-a)/b] |a<x<arh

(F+R)/2 =P=(6?,,,—(2[)/5

This means that P increases linearly with x from P] to P2 across region |l. This type of
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equilibrium is sketched in Fig. 6.

It is convenient to describe the equilibrium by QI, QIII' a, bandV = PI/PZ' These
quantities could be expressed in terms of a more physical set of given quantities, e.g.
Qlll' X, T], T2, So etc. The corresponding relations, however, are not required in
the stability analysis and are therefore not explicitly calculated.

Constant heat capacity, C = const. is assumed in order to retain the type of differential
equation. This is valid only if n, = const, ni = ni(x) and ni & n,: However, the marginal
stability limit, i.e. the stability criterion, nevertheless also applies to the general case,

n, = ne(x), ni = ni(x).

The stability analysis proceeds as before except that now

SQ= P‘lx1:‘z\’(xfo)l7>ﬂ/al , X =Xq,
?2Xz= 'f"(v()(ZO)l/Pz/Qm ) X=X

and in the determinant D and in the stability criterion one has to replace

P/Qr_’st/Qr ) P/Qm—>7?2/62m

With the boundary condition ‘(.:'(0)= 0 , i.e. fixed temperature at the boundary, we get

as a sufficient (not necessary) criterion for instability

4*0(—72’--&(%‘[;)-— A <0,
L n r Qu

®
7r>1‘Z(G?m*C?I)/(AMH/)) , PZ'-'VF.,

In contrast to the basic sheath (P. =P, =P), we now also find unstable solutions if -

1 2
PZ/P] is above a certain level.
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A simpler criterion is obtained in the weak gradient approximation:

Fr= P({‘Z) _hR-F
Rehilng) TRy

4’

) <1

The criterion for instability becomes

2 =7
2> [5G 2 -1]

and if in addition
a . Qr
Iy = T/ Qll! >R T
n
then 2
» N b G
a 2
N o
for instability.
Indeed, for the most interesting equilibria (QI & QIII' a % b) we get instability
even for a very weak density gradient if density and temperature increase in the same

direction.

For the physically less meaningful boundary condition 96\-/‘))( =0 4 the wall

(fixed heat flux), the criterion is even more stringent:

? >0 ) unstable,

i.e. any P2>P] causes instability, while P2 < P] (different sign of temperature and

n‘e'ni gradient) yields improved stability (necessary criterion).

For a typical equilibrium the unstable eigenvalues € (or growth rates X= QZC’Z) are

calculated numerically from D( € ) = 0. The result is shown in Fig. 9 q) and b), where
E-b is plotted versus V = PZ/P] and ')Z = (V-1)/(V+ 1), respectively, for both types of

boundary conditions. The analytic criterion is also given and turns out to coincide with

the numerical marginal points. The criterion thus seems to be necessary and sufficient.
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The absolute value of the growth rate can be interpreted in terms of a heat conduction time
tH . Overa sheath width A as follows :

+Co. . ) 2 2
From the heat conduction equation and a model sheath, T = To cx /A we get

4 12T . X 9T
= = = = 2CX/A%
fll.c. T Jt T Ix? /

y=CXe? = 1 (¢4)

and

The maximum £b value found in the example for P2/P] > 1, £b= 0.8 therefore
corresponds to an e-folding time Z“e of the instability which is roughly three times the

typical heat conduction time over the region ll:
e 2y
le = }L = 2%, /() = 3ty .

For an arbitrarily chosen case, V =3 and £bx0.4, the corresponding eigenfunction

is shown in Fig. 10. It is recalled that a positive £~ at a sheath boundary corresponds
to an outward shift (smaller x) of that boundary (and vice versa), the magnitude being
dependent on T~ and the local equilibrium temperature gradient (Sec. IIl, 1). In the
above example, the shifr?’] is slightly larger fhan?{z.

turbance causes an outward shift of the sheath and the sheath width increases in parallel.

Thus, a positive temperature dis-

But the total radiated power decreases since ,801 { </8Q2Iallowing a further increase in

temperature and driving the sheath unstable.

c) Multistep radiation characteristics

(including density gradient and additional heating)

The stability criterion for equilibria with multistep radiation characteristics (Fig. 7 and

Sec. ll, c) is simply obtained from that in Sec. |l a by replacing

T = (h@-k@)/ak - ar/e,

% — (B (4) - 77,,(5))/@/:: (k) = 4%, /@,

since the only significant change is again for the value of S Q at the free boundaries
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(Q| and QHI are no longer constant in the respective regions).

In order to get a simple and explicit form of the criterion we assume that the radiation power
in regions | and Il is small compared with that in region Il ( ))4/ VZ(( 1, see below).
In addition, a small density gradient ([‘}zl &€ 1) may exist.

Rl0)=nF, Fo(a)= 7 (1~
7711(6)”7;7; 77/ (5)=7i(7+7z)

Neglecting y) - 12 terms, the criterion for instability is

a (6-Q,) Rz- Q4 fa+h {0 -Q

4+ B _ i Z 1 a 2 1) -

0< ) Toq ) T () egn) - (v,
In the most interesting limit, Q]/QZS Y & 1and a = b, the criterion reduces to the

simple form

0€V;_—7Z or OZ-€\7

for instability. This means that a high-temperature tail in the radiation characteristic
reaching far into the hot plasma ( VL > 0 ) has a stabilizing influence on the radiating
sheath and therefore a higher density gradient can be tolerated. The small radiation in

region | ( )91 >0 ) has much less influence on stability.

The above criteria also apply quantiatively to the case of radiation losses plus temperature
dependent heating power if the latter has a jump at the same temperature as the radiation.

Some practical consequences have already been discussed in Sec. IlI, 2a).

d) Spatially fixed jump of X (including a density gradient)
*

A single, spatially fixed jump of X at an arbitrary x = x would complicate the model
by introducing a third internal boundary. This difficulty is circumvented by choosing the

jump in X to be close to one of the boundaries of the radiating layer. It can then be
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accounted for by properly reformulating the boundary conditions at that layer.

&) Jump of X in region Il close to x, (Fig. 11a)

The position of the jump is denoted by x* and it is assumed that x* - x] & b and
positive; x ¥ separates region |l in lla and IIb (Fig. 11a). The variation of the perturbed
temperature €~ over lla is negligible ( E(X*’X) & 4 ) and therefore € is continuous

as before. The flux jumps at X by gQ], but is continuous at x X , which means

2/ Dt// /2//”: D(z/b

7(//“ = ZI ) Z//A ’7(///

The modified boundary condition at x. a« x, separating region | and Ilb 2 [, is then

1
x// 9271 _ DT[ _ 7> ) z\«
X Ix ox Q@ ‘oI
All other boundary conditions are as before (Sec. lll,1). Inserting the ansatz for

(now EI 0= VX/(C ’Zfﬂ) ) and calculating the determinant of the system of linear

equations, we arrive at a rather complicated criterion for instability which for Q] <4 QZ'

a & b reduces to
Obviously, 2//1 (XI is stabilizing and allows for positive 7 Qf <<4 but the
z

effect is rather small.

B) Jump of X in region |l close to x,, (Fig. 11b)
Region Ilb now shrinks to a small width (x2 - x*({ b and positive) and the modified flux

Xﬁ/ﬁq’%/
Tx An @y T X
o X mo 9x (II 4 ne =<

The criterion for instability including a density gradient is then given by

condition at XL becomes

iy Xy 9t P
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again for the limit Q] ¢ Q2 and a = b.
Now there is a strong stabilizing effect if ),//” (},//, and destabilization in the opposite

case, and, of course, for constant density (’Z = 0) the criterion for stability is simply

Xy < X

The conclusion for a real plasma is that a heat condution coefficient which decreases
towards the plasma centre, especially across the inner part of the radiating layer, effectively
stabilizes the sheath. Fortunately, in experiment the heat conduction coefficient seems to
exhibit just this behaviour. A region of ergodic field lines or a separatrix near the plasma

boundary would also act in the right way.

If, however, there is an internal island close to the inner boundary of the radiating layer,
then instability occurs which may destroy the sheath or, at best, result in q new stable

equilibrium. This island effect could have some relevance for the disruption in an impure

tokamak plasma / & /.

So, in addition to equilibrium control by A (X) we find that the stability is also sensitive
to X(x), offering another "knob" for external control.

J)Jump of X in region | or |l

The same procedure as before is applied to derive the dispersion relation and the stabil ity criterion,

It turns out, however, that the marginal point is not influenced and the stable regime is the same as
with constant X overthesheath, i.e.the stability criterion remains unchanged. Only the growth
rates and eigenfunctions away from the marginal point are slightly affected. A X variation
outside the radiating layer is therefore not expected to influence the stability directly.

Of course, there is an indirect influence since any change in a physical parameter changes

the equilibrium, as discussed earlier.

e) Temperature dependent heat conduction coefficient X(T)

This case, though possibly of practical interest, is not treated quantitatively in this
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paper since the mathematical procedure would be quite different, requiring a completely
new analysis. It should also be noted that X e T”with n < 0 leads to an inherently
unstable situation even in a pure heat conduction sheath. In order to get stable plasmas,
one needs additional stabilizing mechanisms like those described above. The effect of

additional radiation losses is not a priori abvious.

A numerical model / 9 / developed as an extension of the present one, indicates stability

also in this case.

IV. Relevance of the Model for Non-Stationary Plasmas

The equilibrium and stability results are only applicable in a stationary or quasistationary
phase of a discharge where the plasma parameters change on a ftime scale which is much
longer than that of the eigenmodes of the radiating sheath. The latter is of the order of the
heat condution time over the radiation layer and therefore indeed much smaller than the
average energy confinement time, at least if heat conduction is dominant in the bulk
plasma. The average particle confinement time is usually assumed to be of the order of the
energy confinement time, too. The stdionary state will usually be achieved during the

flat-top phase of an experiment, e.g. during thermonuclear burning in ZEPHYR.

Major problems are to be expected during the heating and shut-down phase: Firstly, the
loss power appreciably changes during that period and, in order to get all the power
radiated away, the impurity content must be appropriately adjusted. Fortunately, there
seem to be self-regulating mechanisms as indicated by the BALDUR results described, at
least if the variation is slow enough. The linearized stability analysis is then still meaning-

ful at any instant.

During switching of the heating power the problem is more complidated. On the one hand,
the average loss power from the central plasma does not change fo first order since the energy
confinement time and the plasma energy content do not jump when the heating is switched
onor off. The additional heating power is mainly converted into internal energy. But,
looking at the plasma in more detail, one finds that appreciable local changes can occur.

As an example, let us look at neutral injection. There is a substantial part of the beam




- 20 -

energy deposited in the plasma boundary. If the radiation sheath was in equilibrium
before neutral injection, then it is suddenly transformed to a non-equilibrium. In order
to describe the subsequent evolution, we need a one-dimensional, nonlinear and
time-dependent transport model (such as BALDUR). The present sheath model can at
best indicate how the sheath might develop by looking for neighbouring equilibria and
their stability. Of course, a slow, continuous variation of the heating power would be

desirable in order to retain quasi-stationary conditions.

A special ZEPHYR feature is the adiabatic major radius compression, which changes all

plasma parameters within much less than an energy confinement time according to adiabatic

scaling laws. Thus, an initial sheath equilibrium is transformed into a well-defined final

state, which again will be a non-equilibrium and the same holds as before. If the deviation
of the final state from a neighbouring equilibrium is not too large, then it may be treated

as a small perturbation and the stability criterions are applicable. Further considerations

on the non-stdionary evolution of the radiating layer will be given elsewhere.

V. Summary and Conclusions

In one-dimensional plasma transport simulations with the BALDUR code including iron
sputtering we have discovered a radiation cold plasma layer, radiating away nearly all
the energy lost from the central plasma. Very fundamental arguments described elsewhere

e.g. /4/ support the existence of such a layer in large fusion machines.

In order to understand the properties and the scaling of that boundary layer, a discontinuous
sheath model is developed which yields simple analytic expressions for the equilibrium
parameters and for stability criterions. Growth rates and eigenfunction are also easily

derived.

The sheath model includes heat conduction, radiation and additional heating. The
radiation characteristic is represented as a multistep function of temperature, resulting
in spatial discontinuities. The heat conduction coefficient may jump in space, and radiation

losses and additional heating may jump or change continuously. A density gradient is
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allowed and temperature and heat flux change continuously in space anyway.

With respect to equilibrium the scaling with the heat conduction coefficient and with
additional heating is most interesting since it offers the possibility of external control

of the radiating layer. For instance, the total radiated power can be increased at constant
impurity content by increasing x , e.g. by ergodization of field lines. The equilibrium

relations are also useful for comparing different types of impurities etc.

The stability against temperature disturbances or, equivalently against a spatial shift of
the internal free boundaries (discontinuities) is investigated. Global stability criterions
for a variety of equilibria are derived. For the most interesting case where most of the
outgoing energy is radiated away, the following main tendencies are obtained:

- For spatially constant density and heat conduction, temperature independent
additional heating and a single-step, box-type radiation characteristic the sheath is
weakly stable irrespective of the geometrical dimensions and the radiated power
fraction.

- A density gradient such that the product of electron times impurity density (deter-
mining the radiated power) increases in the same direction as the temperature, is
destabilizing.

- The high-temperature wing in the radiation characteristic, causing radiation extending
into the hot bulk plasma is stabilizing.

- A temperature dependent heat deposition or loss is stabilizing if the heating power
decreases or the loss increases with temperature. (Important examples of such a
mechanism are ohmic heating and ionization of inflowing neutrals). This agress with
the qualitative condition that the total power loss should increase with temperature
to get stability.

-  Strong stabilization is obtained if the heat conduction X decreases spatially towards
the plasma centre, especially in the hotter part of the radiating layer. (Experiments

indicate just this behaviour!)

Growth rates were calculated for the case with destabilizing density gradients. The result

indicates that the analytic stability criterion is exact. The maximum growth rates are of
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the order of the inverse heat conduction time over the radiation layer. The eigenfunction

is also calculated for an unstable case.

The results of this analytic model may be useful to understand the dynamics of a radiating
boundary layer in numerical plasma simulations and in experiments, and it may also serve

as a useful guideline for them.

Acknowledgement : The author is indebted to K. Lackner for many useful discussions.
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Figure Captions

Fig. la: Temperature and density profiles for a burning fusion plasma
(R=135cm, a=50cm, B=9.14 T) calculated with the BALDUR code
(including iron sputtering). A cold plasma mantle (Teé 10 eV) has developed.

The position of the radiation layer is indicated.

Fig. 1b: Heating and loss power within a cylinder of radius r versus r (same case as
Fig. 1a). The major loss mechanisms are electron heat conduction in the
centre and radiation in the plasma mantle. The & -heating exceeds the total

losses everywhere, i.e. the plasma is globally ignited.
Fig. 2:  Power balance (as described in Fig. 1b) during RF heating. The computational
grid is refined in the edge region in order to get a better spatial resolution
of the radiation layer.
Fig. 3:  The box-type radiation characteristics used in the model.
Fig. 4: Basic model sheath structure. The radiation power density P, the heat
flow Q and the temperature T are given as function of the distance

from the limiter at X =0,

Fig. 5:  Sheath structure including space-dependent heating, H(x); the simple case

with piecewise constant heating is sketched.

Fig. 6:  Sheath structure with spatially varying radiation power density P(x) caused

by changing electron= and impurity density, n, and ni
Fig. 7:  Sheath structure assuming a multistep radiation characteristic.

Fig. 8:  The function D (€) and its behaviour for €>0and &= 0O .
if p (0) <€ O there is at least one positive £ where D ( € ) = 0.




Fig. 9a: Normalised growth parameter & + b versus V = PZ/Pl for two different

boundary conditions, showing only a small difference for large V.

Fig. 9b: Normalised growth paramter & « b for small V = P2/P] . The analytic
stability criterions are indicated also. They coincide with the numerial

stability boundaries.

Fig. 10: Eigenfunction T’(x) for an unstable equilibrium with spatially varying

impurity density and therefore varying radiation power density P (x).

Figs. 11q,
11b: Sheath structure including a jump of X at a point x* near x1 and xo,

respectively.



= 28 &

References:

//
/2/
/3/

/4/

/5/

/6/
/7/
/8/
/5/

A. Gibson; J.Nucl.Mat. 76 & 77, 92 (1978)
Y. Shimomura; Nucl.Fus. 17, 626 and 1377 (1977)

P.H. Rebut, B.J. Green; Plasma Physics and Contr. Nucl.Fusion Research 1976,
Vol. Il, p.3, IAEA Vienna, 1977

H. Kotzlowski, F. Mast, H. Vernickel; 4th Int.Conf. on Plasma Surface

Interaction in Contr.Fusion Devices, Garmisch-Partenkirchen, Germany, April 1980

(to be published in J.Nucl.Mat. 94 & 95 (1980)

D. Post et al.; BALDUR One-Dimensional Tokamak Transport Code; Princeton
Plasma Physics Lab., 1976

D.E. Post et al.; Atomic Data and Nucl. Data Tables, 20, 397 (1977)
W. Engelhardt; Bull. Am. Phys. Soc., 22, 1106 (1977)
K. Lackner; private communication

W.J. Goedheer, L. Lengyel; private communication




- 26 =

0°0S

oy *6i4

3

uoiposd |
a1njoiadway v _._.
Eu\ L
ooy o oe 0°0Z 0°01 0°0

Aj1suap uoui *dy
'}
Ajisuap wnijidy ‘wniiainap 14,
A}ji1suap uoloa|s ®y
wa/ 4
o oy (she > o oZ 0°01 0°0 0°0S
1 1 1 1 00 °0
?
furgoor
Ly dy 71+30°2
Iy r1+30°y
-71+30°9
w -71+30°8
m‘
u
ST+30°T

00 °ZC

00 ‘0%




e

qp *6i4

UOIJDBAUOD PUD UOI}ONPUOD JD3Y UOHDI|D 1113
UOI}D8AUOD PUD UO14ONPUOD Jpay uol NOI
Buiyoay o1wyo :WHO uonjoipol QWY
Bulyoay- W 41V s|paynau abupyoxa abioyd XD
w> /4 wio [ 4
0°0g (ee 4 [oRde 0°0Z 0°01 0°0 0°0S 0oy oo 0°0Z 0°01 0°o
® 1 1 1 1 o
LD . - ; 00 ‘0 00°0
213
dv \ 4 oo°g -4 ©0°9
/
’4 NO[
vvv avy
|
F\T\V %9 FirS—
4 o00°Z1 <4 00°Z1
Buijpay \S Y\ $SO7 3:
0087 00 ‘8T




Z "6y

"q1 "B1499s : suoipiasiqqo Jayjo !Burypay Aouanbayy-ybry :qy

w08k <

Eu\& Eu\g
[e Be, 4 0°0¢ 0°0Z 0°01 0°0 [eRe, 4 (s e 34 0 °oZ 0 °01 0°0
1 ] | l _0°0 j 1 1 I ] . 0°0
3713
-0°g —~0°S
avy NI
~ O 01 —~ 0 ‘0T
JH
pire)
R - 0°g1
MW MW
d d
— 0 °0OZ : —0°02
0°sZ o°sz




- 29 =

ST

Sot

< AX

P(x) A

I <

X2:G+b

X‘:Cl

Fig. 4

Qx) 4
[11
[

Tix)d




- 30 -

<

Hp=Hy ===

P(x))

X

Tx) |

Fig.



- 3l

: 614
——— |
_ | 9 *Biyg
M i =
| | _
| | | -
_ _ | T
_ _ _
| A o |
_ | T
X “ “ "
il _
m A
N _ | T (X)L
| m
_ |
|
- _ | o “ “
" “ V(X)O o 1
S | | e
Am _ “ x | 1(X)0
d N> | a0 ) _ m
(U-1)d ————————=
B =
| 1(X)d °S-(x)' ////
S-(x)'u-(x)°u=(x)d
1(x)d




D(EN

N |

Qu_
Q, i
a_
-
(ne=const.nj=n;j(x)< ne)
UL L LI
10 30 100
V=R /R




Eb*

- 33 -

0.06-
1 %o)=0 1(0)=0
ox
0.044
0.021
Qur _
| G
- |
|
| b7
|
0 I [l 1 1 1 1
| |
(|) O.IZ 0.04 0.06
| |
I~

analytic criterion

Fig. 9b

= (V=17 (V+1)= 0.5(V-1)




]
4
™

1

NN\

(SHuN ‘quD)

n_+ou~x u__x
Ad
|
| - |
_Re _
\\ _
m__\ |
| |
“ “ JIDM JO Ja}iwli|
| _
_ _ i
_ |
| |
| _ i
|
MH_.&\ND_H> " “ AvaVAXiCH.—C
| ¢'}SU0D =°u)
_q n . ]
e n rouPIPe “ 4/XJ91°0= A
° | | 70293
~To _ | 0=(0)2
: _
. wnuqinbs “ |

y X1

Fig. 10



qrl B4

|
X X i
£
_ _
| _ |
| _ “
g _
b
L |
% _ !
X u “
[ |
|
| | |
|| |
_
|
|
|
| | “ |
X | |
| | |_r 111
T R v T v o4
_ _
m w =XHﬁX
|
i _: o1 m I
! 1 (X)X

oL "6i4
*x
[
__
X | %
m B
|
_ L)
_
| i
§
| |
| bt
_ N
_ “ _ 1 (X)L
| |
_ |l
I T
B
_
_ _ “
| " _
w _ _
_ |
_ L
| A 1(x)0
_ | |
1 I3
m | IEXH:X‘
|
| ~x.
| e U
S S
i _ 1
°11

| (X)X



	IPP 1_182 Deckblatt
	IPP 1_182 Text



